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Doping of carbon nanoparticles with impurity atoms is central
to their application1,2. However, doping has proven elusive for
very small carbon nanoparticles because of their limited avail-
ability and a lack of fundamental understanding of impurity
stability in such nanostructures3. Here, we show that isolated
diamond nanoparticles as small as 1.6 nm, comprising only
∼400 carbon atoms, are capable of housing stable photolumi-
nescent colour centres, namely the silicon vacancy (SiV)4,5.
Surprisingly, fluorescence from SiVs is stable over time, and
few or only single colour centres are found per nanocrystal.
We also observe size-dependent SiV emission supported by
quantum-chemical simulation of SiV energy levels in small
nanodiamonds. Our work opens the way to investigating the
physics and chemistry of molecular-sized cubic carbon clusters
and promises the application of ultrasmall non-perturbative flu-
orescent nanoparticles as markers in microscopy and sensing.

Nanometre-sized fluorescent emitters are needed as probes for
fluorescence imaging with minimal perturbation in applications
ranging from materials science to probing protein interactions in
living cells6. Dye molecules have a very high brightness per unit
volume or mass, but are usually not photostable at room tempera-
ture. To overcome this limitation, quantum dots were developed7,8.
Semiconductor quantum dots can have a core size of a few nano-
metres; however, their total size increases up to �10 nm when an
outer passivation layer is added. Fluorescing centres in diamond
are very attractive in this respect because of the rigidity of the
diamond lattice and its wide bandgap, which cause a localization
of ‘optical’ electrons within one to two interatomic distances from
the defect. However, doping of nanodiamonds is perceived to
have a size limit, depending on the defect centre. As an example, cal-
culations have predicted nitrogen to be thermodynamically unstable
in nanodiamonds with less than 2 nm in sizes3. In contrast, silicon-
vacancy (SiV) defects in hydrogen-passivated truncated octahedral
nanodiamonds have been predicted theoretically to be stable in par-
ticles of �2 nm in diameter9. In accordance with this work our
simulation indicates that the SiV centres are thermodynamically
stable even in nanodiamonds with sizes ranging from 1.1 nm to
1.8 nm. At these sizes, ab initio calculations (see below) do show
a quantum confinement effect in nanodiamonds10,11, leading to an
increase in the optical gap and changing the fluorescence photon
energy of defects. Because the smallest man-made fluorescent
isolated nanodiamonds to date have sizes limited to �5 nm

(refs 12,13), observation of this phenomenon has remained
elusive. However, it is known that some types of meteorite
contain nanodiamonds, presumably of presolar origin14. Their
sizes range from 1 nm to 10 nm (refs 14,15) and, recently, SiV flu-
orescence has been found in this material16. In the present work
we use such nanodiamonds with sizes less than 2 nm for investi-
gation of the fluorescence properties of the SiV centres.

Initially our experimental work was motivated by calculations
that suggest the stability of the SiV defect centre in nanodiamonds
smaller than 2 nm. Owing to the small size of our nanoparticles, we
modelled them using quantum-mechanical calculations in the
largest quantum confinement limit; that is, the surface was fully ter-
minated with hydrogen atoms. We calculated formation energies for
the SiV defect in 1.1–1.8 nm nanoparticles by first-principles
density functional theory (DFT). A SiV defect was modelled with
a silicon atom located between two vacant sites of diamond
lattice17 (Fig. 1). For small nanodiamonds, the formation energy,

Figure 1 | Structure of SiV centre in diamond. Schematic representation of a

small nanodiamond with an embedded SiV.
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characterizing the stability of the defect structure, may critically
depend on the placement of defects. However, for the SiV, our find-
ings are that the formation energies are identical, within 0.1 eV, for
every nanodiamond size when the defects are placed in the centre of
the particle (see Supplementary Fig. 3). This suggests that there is no
‘self-purification’18 effect for SiV defects; that is, they remain stable
even in very small nanodiamonds. Also, when the defect is placed
near the surface (with only a single carbon atom separating the
core of the defect from the surface), the formation energy is
�0.2 eV smaller for a negatively charged SiV than their correspond-
ing value in the centre of the grain. With such a small energy differ-
ence there is no significant driving force acting to cause the defect to
diffuse out to the surface, thereby resulting in stable SiVs even in
very small nanodiamonds.

Excitation-state energies were determined using time-dependent
density functional theory (TD-DFT), taking into account nuclear
motion due to excitation. Because of quantum confinement (see
also refs 19 and 20), a fully occupied and a partially occupied
e state (see below) appear in the gap of our nanodiamonds. These
e states are strongly localized on the carbon dangling bonds of the

SiV defect. The lowest-energy excitation occurs predominantly
between these fully occupied and partially occupied e defect states.
The energy and the forces in the excited state were determined
using TD-DFT. The calculated zero-phonon line (ZPL) energies of
the negatively charged SiV defects are between 1.85 eV and 1.75 eV
in 1.1 nm to 1.8 nm nanodiamonds. We observe a quantum confine-
ment effect on the bandgap of nanodiamonds similar to that
previously observed experimentally, whereby the valence band
maximum of the nanodiamonds is lowered (with decreasing particle
size) with respect to the vacuum level. This considerably downshifts
the position of the fully occupied e defect level via exchange and
correlation interactions between this e state and the host diamond
states (Supplementary Fig. 5). As a consequence, there is a trend of
increased energies for the lowest electronic transition of the SiV
with decreasing particle size. Indeed, in our experimental data
(discussed below) we observe such a trend in 1.6 nm nanodiamonds.

To test our theoretical predictions, meteoritic nanodiamonds
were extracted from the Efremovka CV3 chondrite21. Defect lumi-
nescence was characterized by a narrow ZPL near 738 nm
(1.68 eV) in the photoluminescence spectrum16,22. Figure 2a
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Figure 2 | Photoluminescence analysis of the meteoric nanodiamonds. a, Background-subtracted SiV photoluminescence spectra measured with 488 nm

laser excitation at room temperature for meteoritic nanodiamond powder, CVD diamond single crystal and Siþ-implanted type IIa (Imp. IIa) diamond. The

position of the SiV peak maximum is 736.8 nm for the meteoric nanodiamond powder, and 738.6 nm for CVD and natural diamonds. b, Photoluminescence

spectra of two exemplary nanodiamonds dispersed on a silica slide. Nanodiamond 1 is marked in the confocal scan image (d) by a white circle and its photon

statistics are also analysed in Fig. 5. c, Peak positions of all analysed spectra. The average of all peak maxima is 735.7 nm. d, Confocal fluorescence scan

image of the dispersed nanodiamond sample using a red laser and 9 mW excitation power.
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shows the SiV fluorescence emission spectra measured for two bulk
diamond samples (silicon-doped chemical vapour-deposited
(CVD) diamond single crystal and a natural type IIa diamond
implanted with silicon ions) in comparison with a representative
SiV spectrum of nanodiamond powder containing a large number
of fluorescent particles. As can be seen in Fig. 2a, there is a blueshift
of 0.004 eV of the SiV peak from meteoritic nanodiamonds ensem-
bles relative to that of SiV in bulk diamonds. For further analysis,
nanodiamonds from colloidal solution were dispersed on a silica
slide and analysed by confocal microscopy. Fluorescence of most
spots was stable for at least 5 min, which is sufficient to acquire
high-quality photoluminescence spectra. Some spots do show
long-time-stable (.24 h) photoluminescence from single nanodia-
monds (see below). The photoluminescence spectra of two nanodia-
monds are shown in Fig. 2b. Nanodiamonds typically show one or
two resolved emission peaks, with significant shifts between the
spectra from different nanoparticles. Variations in the SiV emission
band position (Fig. 2b,c) can be explained by the existence of strong
lattice stress in diamond nanoparticles, similar to that in CVD
nanodiamonds23 where at low temperature this is accompanied by
a redshift of emission24, or probably isotopic enrichment of
silicon (DE¼ 1 meV; ref. 16) in some particles due to their extrater-
restrial source. This finding also explains the widely broadened
emission peak of the nanodiamond powder (Fig. 2a). The main
peak positions of all analysed fluorescent nanodiamonds are
shown in Fig. 2c. The average position of all peaks (735.7 nm) is
shifted to higher energies by 0.007 eV, which is close to the shift
of 0.004 eV from nanodiamond powder.

To obtain more information about the spatial dimensions of the
diamond nanoparticles, they were analysed by aberration-corrected
high-resolution transmission electron microscopy (AC-HRTEM).
Selective area electron diffraction (SAED) analysis revealed that
the investigated fraction of diamond grains in the analysed
sample have a characteristic size below 2 nm. This characteristic
size was determined from the half-width of the 111 diffraction
peak of the SAED patterns with a value of 0.75 nm21. This
corresponds to a crystallite size of 1.3 nm, as shown in Fig. 3a.
The smallest free-standing diamond grain found in the
sample was 2 nm in size (Fig. 3b). Nanodiamond crystallites with
size down to 1 nm were observed in small agglomerates (Fig. 3c).
To further explore nanodiamond size without the need for immo-
bilization on a support structure and hence aggregation, nanodia-
mond solutions were investigated using fluorescence correlation
spectroscopy (FCS)25. FCS provides a highly sensitive quantitative
statistical analysis of fluorescence fluctuations, which can be
used to determine the hydrodynamic radius of fluorescent
diamond nanoparticles containing SiV centres26. The size of the
particles was derived from the characteristic diffusion time of the

particles through the confocal volume. Figure 4 presents a compari-
son of two autocorrelation functions determined for nanodiamonds
and Rhodamine 6G dye molecules under identical experimental
conditions. From the autocorrelation function the mean fluorescent
nanodiamond particle size was estimated to be 1.6+0.2 nm.

To evaluate the photon statistics of the SiV fluorescence, nano-
diamonds immobilized on a fused-silica slide were investigated.
An autocorrelation function g(2) was measured for one of the
fluorescent nanodiamond spots (Fig. 5a) (see also the spectrum of
nanodiamond 1 in Fig. 2b). Fitting the background-corrected auto-
correlation function and assuming emission of multiple identical
emitters4,27 revealed three emitters within the fluorescent spot.
The fitting routine also took into account the set-up-related jitter
by deconvoluting the measured autocorrelation function with a
Gaussian response function. To further characterize the emitters,
its saturation intensity was measured to be 38 kc.p.s. (kilocounts
per second; Fig. 5b) resulting in 12.7 kc.p.s. per emitter. These
rates are comparable to single SiV centres produced by ion implan-
tation in bulk diamond4, when taking into account the different
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Figure 3 | HRTEM analysis of meteoritic nanodiamonds. a, The electron diffraction ring pattern is evidence for the diamond crystal structure. Inset: intensity

plot profile and background subtracted peak intensity of the 111 ring. b, AC-HRTEM image of free-standing nanodiamond grain (size, 2 nm). c, AC-HRTEM

image of nanodiamond grain (size, 1 nm) (encircled).
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Figure 4 | FCS measurement of luminescent meteoritic nanodiamonds and

a dye molecule (Rhodamine 6G (Rh 6G)). The fit (solid curve) of the

measured autocorrelation function (red symbols) yields the characteristic

diffusion time, resulting in an effective size of fluorescent particles of

1.6+0.2 nm when using 0.6 nm as a reference for the hydrodynamic radius

for Rhodamine 6G in water (calculated from refs 32 and 33) .
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photon extraction efficiencies caused by the different sample geome-
tries. Figure 5c presents fluorescence time traces with 10 ms
binning, in time windows of 5 s and 100 s, respectively. The SiVs
show blinking5 but stably emit fluorescence over tens of minutes.
Although the origin of this blinking is not clear as yet, it appears
that it is related to the nanodiamond size rather than the SiV itself5,12.

In conclusion we have demonstrated fluorescence emission from
SiV defects in nanodiamonds with sizes below 2 nm. For the nano-
diamonds, an average shift of 0.004 eV to higher emission energies,
corresponding to an emission wavelength change of 1.8 nm, was
found. Calculations indicate that this shift is due to a quantum con-
finement effect mediated by the valence band electrons of the nano-
diamond. Our calculations also show that, similar to the ground
states of most other defects in diamond, the SiV excited-state wave-
function is almost exclusively localized on the defect site. This,
together with the fact that even the excited-state energy is �2 eV
below the conduction band of the nanocrystal, results in a high stab-
ility of the photoelectron on the defect site, and also leads to nano-
particles showing bulk and molecular properties with strongly
modified bandgaps and surface-related absorption bands. Despite
the apparent blinking of nanodiamonds, their emission is rather
photostable and allows continuous long-time observation over
tens of hours. These small nanodiamonds, with dimensions com-
parable to dye molecules, are therefore promising as, for example,
fluorescent markers in cell biology where having sizes smaller
than typical proteins is an important prerequisite. In addition, the
SiV in diamond exhibits narrow-band near-infrared emission,
another important criterion for life-science applications in terms
of observable sample penetration depth and reduced autofluores-
cence28. Although the present work has used nanodiamonds from
meteorites, current production technologies for nanodiamonds
have achieved sizes of 2–5 nm (ref. 13). Our results provide substan-
tial motivation to pursue further work on size reduction down to
molecular sizes.

Methods
The nanodiamond samples were extracted from the Efremovka CV3 chondrite
using well-established processes involving multistage chemical treatment of the
meteorite pieces by HF, HFþHCl, KOH, H2O2, K2Cr2O7 and HClO4 at various
temperatures and isolation of the colloidal nanodiamond with high pH solution21.

All samples had a translucent pale yellow colour, typical for the meteoritic colloidal
diamond. Infrared absorption investigations14 indicated that the main functional
groups on the surface of the extracted meteoritic nanodiamond were oxygen-
related groups: carboxyl, carbonyl and hydroxyl.

AC-HRTEM and electron diffraction experiments were performed on
nanodiamond samples dispersed on a carbon grid using a FEI-TITAN 80-300
operated at 80 kV (to avoid knock-on damage) equipped with an image-side
aberration corrector with a resolution of 0.15 nm and a JEOL 4000EX microscope
operated at 400 kV and with 0.17 nm point resolution.

Photoluminescence spectra for the nanodiamond powder were recorded at room
temperature using a LABRAM HR spectrometer with an Arþ laser for excitation.
Laser radiation (power, 0.1 mW; wavelength, 488 nm) was focused on a spot
(diameter, 2 mm) on the surface of the nanodiamond powder.

Fluorescence correlation spectroscopy was performed using a home-built
confocal set-up with a high-numerical-aperture water objective (Olympus,
UPlanApo ×60, NA 1.2). Samples dissolved in polyvinyl alcohol solution were
excited using 0.1 mW of 532 nm laser radiation and their fluorescence was detected
using an actively quenched avalanche photodiode. Fluorescence autocorrelation was
recorded with a hardware correlator (ALV-5000).

To analyse the evaporated nanodiamond clusters on the fused-silica slide, an
oil objective (Olympus, UPLSAPO 60XO, NA 1.35) was used. The SiV luminescence
was filtered out by a bandpass filter (transmission 730–750 nm). For excitation,
red laser diodes (emission peak wavelength, 660 nm and 690 nm; Thorlabs
HL6548FG and HL6738MG) were used. The photoluminescence spectra were
recorded using a broad bandpass filter (transmission 723–817 nm) and Czerny–
Turner like spectrometer (Acton, SpectraPro300i, grating: 300 g mm21) combined
with a back-illuminated liquid-nitrogen-cooled charge-coupled device camera
(Princeton Instruments, LN/CCD-1340400 EHRB/I).

To determine the formation energy of the defects, we applied DFT calculations
within a generalized gradient approximation Perdew-Burke-Ernzerhof (PBE). In
bulk studies we used a 512-atom supercell and G-point for Brillouin-zone sampling
in order to model the neutral and negatively charged SiV defect in diamond. In
particular, we utilized the VASP code to determine the geometry of the defect, using
the projector augmented wave method to eliminate the core electrons, while a plane-
wave basis set was used to expand the valence wavefunctions. We applied the
standard VASP projectors for the carbon, hydrogen and silicon atoms with a plane-
wave cutoff of 420 eV. Geometry optimization was halted when the magnitude of the
forces on the atoms was lower than 0.01 eV Å21.

The nanodiamonds were also studied with VASP code within the PBE
functional, with the periodic images separated by vacuum of at least 1 nm, ensuring
that the critical defect states (and any other occupied states) did not interact.
Nanodiamonds were fabricated to form spherical shapes, which are in line with
TEM experiments (Fig. 3b). The nanodiamonds had carbon atoms at the surface
with two or fewer dangling bonds. The dangling bonds of the nanodiamonds were
terminated by hydrogen atoms; this could correspond to the ‘largest’ quantum
confinement limit because the C–H covalent bonds are stronger than any other
(carbon, nitrogen or oxygen related) covalent bonds that may exist on their surface.
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Figure 5 | Detailed analysis of a fluorescent spot presumably containing only few emitters. a, Autocorrelation function showing the background-corrected

raw data (black) fitted with a model including the instrument response function (blue) and the found g(2) function (red) using the model from refs 4 and 27.

The number of emitters within the analysed spot was found to be three. b, Saturation curve using 660 nm excitation. The fit (red) gives a saturation intensity

of 38 kc.p.s. and a saturation power of 23 mW. Bottom inset: confocal image obtained using a fluorescent bandpass filter around SiV fluorescence at 9 mW.

Top inset: the rate model showing the ground (1), excited (2) and metastable (3) states, and transitions between them used for the g(2) fit function. c, Time

traces at 500mW and 10 ms binning showing blinking of the analysed spot. The red line indicates the mean intensity over 100 s. The blue line shows the

background level of the sample. In the upper graph the time traces are zoomed in for better visibility.
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This idealistic model of nanodiamonds makes it possible to investigate the effect
of quantum confinement, at its maximum limit, on the defect states when the
defect is placed in nanodiamonds of different sizes. We also considered 2 × 1-like
reconstructed nanodiamond surfaces on (100) facets. We found that the
reconstruction has no effect on the electronic structure of SiV defects.
More details and the corresponding references are provided in the
Supplementary Information.

We found in bulk studies that the negatively charged defect is responsible for the
1.68 eV signal29. The calculated ZPL of the negatively charged defect is 1.72 eV,
which agrees very well with the measured 1.68 eV in terms of the expected accuracy
of ab initio methods29. We thus compared the calculated and measured
photoluminescence lines for the negatively charged SiV defect.

To calculate the excitation energies we applied TD-DFT with the PBE0 hybrid
density functional in the kernel by TURBOMOLE code. We utilized this
methodology for tiny nanodiamonds where the experimental absorption spectra
could be well reproduced as well as the vertical absorption energy of a nitrogen-
vacancy centre30. The main interest here is the ZPL where the nuclei relaxes in the
excited state, which lowers the ZPL energy with respect to the lowest vertical
absorption energy. The energy and the forces in the excited state are determined at
the TD-DFT level, as the complexity of the excited-state wavefunction requires
more complex methods than usually used for constrained DFT approaches.
We therefore calculated forces in the excited state within TD-DFT using PBE0 in the
kernel, and obtained the minimum energy within the excited-state potential
energy surface. (For further details see Supplementary Information.) The calculated
Stokes shift of 0.12 eV in the SiV defect is in accordance with the experimental
data extracted from absorption spectra of the 1.68 eV photoluminescence centre
found in large nanodiamonds and bulk diamond31.

Received 24 June 2013; accepted 28 October 2013;
published online 8 December 2013
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1.682 eV luminescence center in diamond and the vacancy-silicon complex.
Phys. Rev. Lett. 77, 3041–3044 (1996).

18. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).
19. Chang, Y. K. et al. Quantum confinement effect in diamond nanocrystals studied

by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377–5380 (1999).
20. Berg, T. et al. Quantum confinement observed in the X-ray absorption spectrum

of size distributed meteoritic nanodiamonds. J. Appl. Phys. 104, 064303 (2008).
21. Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: I.

Isolation of SiC, graphite and diamond; size distributions of SiC and graphite.
Geochim. Cosmochim. Acta 58, 459–470 (1994).

22. Clark, C. D., Kanda, H., Kiflawi, I. & Sittas, G. Silicon defects in diamond.
Phys. Rev. B 51, 16681–16688 (1995).

23. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in
chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13,
025012 (2011).

24. Sternschulte, H., Thonke, K., Sauer, R., Münzinger, P. & Michler, P. 1.681-eV
luminescence center in chemical-vapor-deposited homoepitaxial diamond films.
Phys. Rev. B 50, 14554–14560 (1994).

25. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the
technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

26. Neugart, F. et al. Dynamics of diamond nanoparticles in solution and cells.
Nano Lett. 7, 3588–3591 (2007).

27. Kitson, S. C., Jonsson, P., Rarity, J. G. & Tapster, P. R. Intensity fluctuation
spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev.
58, 620–627 (1998).

28. Neu, E. et al. Narrowband fluorescent nanodiamonds produced from chemical
vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011).

29. Gali, A. & Maze, J. R. An ab initio study on split silicon-vacancy defect
in diamond: electronic structure and related properties. Preprint at
http://arXiv.org/pdf/1310.2137 (2013).

30. Gali, A. Time-dependent density functional study on the excitation spectrum of
point defects in semiconductors. Phys. Status Solidi B 248, 1337–1346 (2011).

31. Iakoubovskii, K., Adriaenssens, G. J., Dogadkin, N. N. & Shiryaev, A. A. Optical
characterization of some irradiation-induced centers in diamond. Diam. Relat.
Mater. 10, 18–26 (2001).

32. Gendron, P-O., Avaltroni, F. & Wilkinson, K. J. Diffusion coefficients of several
rhodamine derivatives as determined by pulsed field gradient–nuclear
magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 18,
1093–1101 (2008).

33. Müller, C. B. et al. Precise measurement of diffusion by multi-color dual-focus
fluorescence correlation spectroscopy. EPL Eur. Lett. 83, 46001 (2008).

Acknowledgements
This work was supported in part by Russian Foundation for Basic Research (RFBR) grants
nos 11-02-01432, 12-05-00208 and 12-03-00787, a grant from Russian Academy of Science
(RAS) programme no. 24, a grant of the President of the Russian Federation for leading
scientific schools (no. 3076.2012.2), an National Institutes of Health (NIH) grant
(no. C09-00053), the European Commission, EU FP7 grants Diamond based atomic
nanotechnologies (DIAMANT) and Development of diamond intracellular nanoprobes for
oncogen transformation dynamics monitoring in living cells (DINAMO), as well as the
European Research Council (ERC) (via project Spin Quantum Technologies (SQUTEC)
Biology and Quantum (BioQ)), the Deutsche Forschungsgemeinschaft (DFG)
(via Sonderforschungsbereiches (SFB) 716) and the Volkswagenstiftung.

Author contributions
I.V., J.W., P.H. and F.J. designed and coordinated the experiment. I.V., A.A.S., L.F.S., A.V.F.,
O.I.L., V.I.K. and I.S. prepared and characterized the sample. U.K. and J.B. carried out the
high-resolution electron microscopy. T.R., S.S. and S.Y.L. designed, set up and carried out
fluorescence measurements. A.G., D.A. and M.V. carried out the calculations and analysed
the simulation data. I.V., T.R., S.Y.L., A.G., P.H. and J.W. wrote the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Correspondence and
requests for materials should be addressed to J.W.

Competing financial interests
The authors declare no competing financial interests.

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2013.255 LETTERS

NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 5

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http:&sol;<?A3B2 show $132#?>&sol;<?A3B2 show $132#?>arXiv.org&sol;<?A3B2 show $132#?>pdf&sol;<?A3B2 show $132#?>1310.2137
http://www.nature.com/doifinder/10.1038/nnano.2013.255
www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nnano.2013.255
www.nature.com/naturenanotechnology

	Molecular-sized fluorescent nanodiamonds
	Methods
	Figure 1  Structure of SiV centre in diamond.
	Figure 2  Photoluminescence analysis of the meteoric nanodiamonds.
	Figure 3  HRTEM analysis of meteoritic nanodiamonds.
	Figure 4  FCS measurement of luminescent meteoritic nanodiamonds and a dye molecule (Rhodamine 6G (Rh 6G)).
	Figure 5  Detailed analysis of a fluorescent spot presumably containing only few emitters.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 450
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 450
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    35.29000
    35.29000
    36.28000
    36.28000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50000
    8.50000
    8.50000
    8.50000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU (NPG PRINT PDF Job Options. 4th September 2006. PDF 1.3 Compatibility. Adds Trim and Bleed boxes top Nature pages where none exist.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [665.858 854.929]
>> setpagedevice


